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Scattering from Objects Submerged in Unbounded
and Bounded Oceans

MICHAEL F. WERBY AND RICHARD B. EVANS

(Invited Paper)

Abstract-We present a study of scattering from objects In a free scattering [1]. The objective of this research is to develop
unbounded ocean and for objects near an interface and In a waveguide. classic scattering theory in a consistent manner from fairly
Major emphasis is on results and discussion of theoretical development is simple to rather complicated physical problems, with empha-
limited to the essentials. An examination of backscattered echoes is
presented for elastic targets. Angular distributions are examined for all sis on application and related physical interpretation. The
target types, as well as environments, with the exception of objects in a methodology and the physical ;nterpretation of the work
waveguide. In a waveguide, beamforming techniques are most appropri- presented here, as well as relatea references, draw heavily
ate for detection of objects. We also examine rigid, soft, and elastic from modern physics concepts. We will deal exclusively with
objects that are either spheroidal or cylindrical. Aspect ratios studied objects submerged in a fluid in which the fluid is first
range from 3:1 to 24:1, and kL/2 ranges (k is wavenumber and L is the
length of the object) are from 3 to 120. A - ; ,: * , unbounded, then near an interface, and finally in a waveguide.
,,, -': ~''  , . ,,, ,C~) 54- The objects will vary from impenetrable to elastic shells.

'I. INTRODUCTION Measurable quantities common to both areas of physics are
N classic and modem physics, the scattering of waves or monostatic and bistatic angular distributions (differential

iparticles from objects or interfaces is often the only means scattering cross sections in quantum physics) and backscat-

by which their properties can be ascertained. It is therefore not tered form functions (excitation functions in quantum physics)

surprising that scattering theory and its implementation repre- that can indicate resonance phenomena. From these calcula-

sent a considerable portion of the articles in both engineering tions we will show how it is possible to extract shape features
and physical science journals. In modern physics problems, and material properties under certain conditions. Emphasis in

one deals not only with scattering problems but also with the this study is on application and interpretation of results, with

more general area of reaction theory, in which the final an outline of the theories used. Section II deals with the
products of some physical encounter differ from those of the unbounded problem. Section III deals with scattering from
initial quantities. In the world of modem physics, relevant objects near an interface. Section IV deals with scattering from
quantities of interest may include angular momentum, nuclear objects in a waveguide. Section V summarizes the results.

radii, and nonclassic quantities, such as intrinsic and isospin, 1I. SCATTERING FROM SUBMERGED UNBOUNDED OBJECTS

parity, and other abstract quantum mechanical entities. Often,
the details of the scattering event are not crucial in obtaining The following development pertains to the problem of
relevant information, and simple perturbation theories with scattering from objects submerged in a fluid in which there are
vague interactions are sufficient to yield results. Thus, because no boundaries. This proves to be a good approximation for
of the broader scope of abstract quantities that enter the high-frequency problems in deep-ocean conditions in which
problem, modern physics scattering and related reaction the object is far from any boundary and detection is close
problems are more difficult, conceptually, than their related enough so that no guided waves can be generated from the
classic counterparts but they are often simpler from the scattered object. In subsequent sections we will consider
computational point of view. The reason for this difficulty is problems in which only one interface is significant and,
that classic problems involve more precise knowledge, such as subsequently, in which waveguides that are either refractive or
details in shape and boundary conditions. Classic scattering is, bottom limited are important. For the present problem one can
therefore, more concerned with shape and material properties. deal with a variety of boundary conditions on the target. The
Nevertheless, a common set of concepts connects the two conditions include objects that can be impenetrable. satisfying
areas of study and, ironically, the older area of classic either soft (i.e., bubbles) or rigid (very heavy objects)
scattering has been enriched by notions and techniques conditions. Other cases can involve fluid targets and elastic
developed in the more recent methodology of quantum solids, elastic shells in which the shells may be evacuated or

embedded with a fluid or another solid. We have listed these
Manuscript received July 15. 1986; revised January 29. 1987. This work problems in order of difficulty and all have been solved
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used draws much from quantum scattering theory and was at some point, we reduce the problem to that of a matrix
originally developed by Waterman [2] for electromagnetic equation in which we can identify the scattered field with the
problems and later by others [31-[71 for a large variety of incident field. We will not include the details, since they have
problems. Improvements to the method have also been made been presented many times. We will give only detailed
by several authors and recent applications of considerable expressions for rigid and soft cases, but not for the more
interest have been presented. The following outlines the complicated elastic solid targets and elastic shells. We will,
method. however, present calculations for the elastic case.

Let us suppose that we have an incident field Ui and we Before we go any further in the discussion, we must find a
wish to find a scattered field Uf. Since the scattering process is complete set of functions that will represent the surface
linear, we can obtain the scattered field from the incident field quantities U(r'). If we are dealing with only the rigid or soft
by means of a linear transformation, which can be obtained problem, then by comparing the EBC solution with the
from several methods. Since this operator represents a normal-mode solution we can show that they are formally
transition from the incident to the scattered field, it is usual to identical for the spherical case if we chose the following
denote the transformation by a T so that we have expansions:

Uf = TUi.  (1) U(r') = bi Re pi(r') (5a)

One can obtain T from normal-mode theory for spherical or
objects, but we will employ the extended boundary condition
(EBC) method developed by Waterman 131, since it works for VU(r') • n= bV Re s,(r') (5b)
fairly general geometries and is amenable to a variety of useful
algorithms. The EBC method is often called the T-matrix where (5a) represents the expansion for the rigid case and (5b)

method, but, in our view, misrepresents the method, which is represents the soft case. These expressions are now restricted

really a boundary integral method. to spherical representations. Earlier works 131, [81 show that

The starting point for the EBC method for fluids is the these functions represent a complete set on the surface for

Helmholtz-Poincar& integral representation for the total field either the pressure release boundary condition or the rigid
boundary condition. When those expansions are imposed, one

U(r)= Ui(r)+ (U(r')aG(r, r')/On arrives at matrix equations that relate the a's with the b's and
the f's, where the f's are the partial wave scattering

- G(r, r')OU(r')/On) dS (2) coefficients in which the scattered field is represented by

where r is some exterior point. If r is some interior point, then Us(r) = -f,'p. (6)
the field U is extinguished so one has

0= U'(r)+ (U(r')OG(r, r')/On The ,oi's are outgoing partial waves as stated earlier for (4).
For the case of a three-dimensional problem in a fluid, then

-G(r, r')aU(r')/an) dS. (3) the V,'s are just outgoing spherical Hankel functions times
spherical harmonics. For the incident field, the quantity Re ',

The quantity G is an outgoing Green's function, and r' is is the spherical Bessel function times a spherical harmonic.
associated with quantities defined on the surface of the object. Finally, when we implement (6), in (4) and (3) we will get two
The last equation, although well known, is usually thought to sets of equations, which are represented by (7); they will be
be of little use. However, Waterman [31 recognized that it the matrix equations we will have to deal with to find the
would be useful as a constraint to eliminate the surface scattered solution:
quantities U(r') in (3) by solving (3) to obtain U(r') to be
used in (2). Note that we have two equations a'nd two f -i Re Qb
unknowns, namely, the scattered field and the surface terms
on the object. Equation (3) can be solved in a number of ways. a = iQb. (7)
It can be solved by using eigenvalue techniques [91, [111 or by The Q matrices appearing previously for the rigid and soft
representing it in terms of a matrix equation by expanding the cases arc given in (8):
incident field and the Green's function in a biorthogonal
representation. Both the Green's function and the incident c
field are given below: Qj= Re pi - dS

an
U i(r) = a, Re i(r) (4a) V Re )

G(r, r')=iK Re ¢,(r<)¢(r>). (4b) = a On dS. (8)

The quantities Re ,i and pi are usually incident and scattered The matrix expressions for the fluid target case are a little
partial waves, with the latter satisfying the Sommerfeld more complicated but are not much more difficult to calculate.
radiation condition. We still do not know the surface quantity One can see that (7) can be used to eliminate the surface
U(r'), but we can expand it in a complete set defined on the quantities represented by the b's. Note that a, b, and f are
surface (i.e.. we satisfy closure). Bv doing that and truncating column vectors that are coefficients of the orthogonal bases
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functions used. We can eliminate b using these equations to first examine bistatic angular distributions which are computed
obtain f in terms of a to obtain from the following:

f= -Re QQ-'a. (9) f(0) A' (cos () ' (13)

From the definition in (1) we can see that the T-matrix is
given by

where 0 is the angle relative to the axis of symmetry. Note also
- Re QQ- '. (10) that the A's are dependent on the azimuthal index M and are a

function of the orientation of the incident field relative to theThis equation must satisfy reciprocity for all cases and theaxsosymtyfthobe.

generalized optical theorem for nonlossy environments. These

properties can be checked to see if this is not the case. This Fig. l(a) illustrates the case for which the incident field
enters the object along the axis of symmetry. At this frequency

way of testing determines if enough terms were included in the the ied ci al o n a the f orar d direti n i
partal aveexpnsins eprsentd b (4-(6. Terearethe field is altered predominantly in the forward direction. Fig.partial wave expansions represented by (4)-(6). There are

other ways of dealing with these equations in which one can be l(b) and (c) is more interesting, since it illustrates a principle
similar to Sneli's law for a flat surface. Here, we have a

assured of obtaining convergence, and there are methods in difr te wae in t dr f t ice n fel an als a

which this has been dealt with as discussed by Werby and iffracted wave in the direction of the incident field and also a

Chin-Bing 19]. In fact, we use the methods in that paper, in

particular, when we do high-aspect-ratio targets that will be ratio, it behaves almost as a flat surface for a large part of the

discussed shortly. In the following results the coupled high- surface area; thus the angle of incidence and the angle of

order T matrix had to be used for the problem to be tractable. reflection are the same. Fig. l(d) illustrates the case for

There is also an alternative method in which one need not deal scattering perpendicular to the axis of symmetry, or broadside.
with a Tmatrix as such, butf could be calculated directly from Note that at this kL/2 the scattered field is well focused andwithsa Tmatrixeas suchtuutficould bercalculatedtdirectlyhfrom
calculating surface quantities by an eigenvalue method [10], has the largest amplitude in the forward direction. It has a

[ 1I]. We wish to illustrate calculations for solids and shells. target strength that is 26 dB above the backscattered contribu-

We will only indicate the forms of the T matrix for a solid tion. This difference is independent of the actual size of the

object and a shell in (11) and (12), where (11) is given in [6] object and is only a function of the shape and the quantity kL/
and [121, and (12) is given in [131: 2. The calculations in Fig. l(a)-(d) were done for a fixedfrequency. By the time kL/2 = 120 the scattered field is on

T=-Re QRP[ QRP] (11) the verge of approaching the geometric limit. For lower
frequencies the pattern would be more wave-like. To see this

T= - (QRR + QRO T)M-'P[(QOR + QOO T2)M-P]' (12) effect let us examine end-on and broadside scattering for a 75-
m-long spheroid with a semiminor axis of 5 m. Fig. 2

where M = Re R + RT 2 + iT. Here T2 corresponds to the illustrates the case for kL/2 = 7.5, 15, 30, 60, and 120. The
T matrix derived from scattering from the inner shell. top curves are end-on and the bottom curves are broadside.

The definitions of the matrices for R, P, and the various Q's Note that the figure illustrates wave-like properties at the lower
are defined in those papers and represent quantities obtained frequencies but becomes more directional and predominate in
by the additional boundary conditions for the elastic case, the forward direction with increasing frequency. Moreover,
where they appear as constraints. We might add that the Q's the forward scattering increases with increasing kL/2, since
for the elastic fluid interface cases are no longer square but are most of the field goes off in the forward direction for the
n X 3n matrices, which adds some complications to the higher kL/2's. Fig. 3 illustrates this point, as we plot the
problem that are somewhat more difficult to deal with. Werby forward target strength for broadside scattering as a function
et al. [IIt, [14] indicate how some of these equations can be of frequency that corresponds to the kL/2's in Fig. 2. Note
dealt with in a more effective manner. A transformation that the quantity grows rapidly at first but appears to level off
method was also developed [I It to show how some of the at the higher frequency end. Our plots are presented as a
inherent numerical difficulties obtained by these expressions function of kL/2 in which we add the geometrical cross
can be overcome. Our aim here is to present results that deal section to the form function. If we were to plot the form
with fairly complicated problems. In the next section, mainly functions as a function of ka for the broadside case, where a is
numerical results of scattering from unbounded objects will be the semiminor axis, and if we were to exclude the geometrical
presented for very high-aspect-ratio rigid and soft problems. cross section, then for objects of a fairly high aspect ratio, the
Elastic solids and shells for some of the interesting effects due above quantity would be about the same in magnitude. That
to resonances will also be examined, means the forward-scattering form function of an object with

For the first example we chose a 150-m-long spheroid that an aspect ratio of 7.5 and kL/2 = 60 would have about the
has a semiminor axis of 5 m (aspect ratio of 15:1). Here, we same magnitude for broadside scattering as one with an aspect
chose kL/2 = 120, where k is the wavenumber and L is the ratio of 15 but kL/2 = 120, since both have ka = 8. This
length of the object. We examine bistatic angular distributions implies that high-aspect-ratio objects, when scattered from
for several cases. The incident field is chosen to be a plane broadside, behave somewhat like infinite cylinders, as we
wave that will impinge on the object at the following angles: might expect.
0, 30, 60, and 90* relative to the axis of symmetry. We Turning to monostatic angular distributions, we find these
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quantities to correspond to measuring the backscattered form
functions (echos) as the receiver rotates 360" about the object.
For the high-frequency case, this would give an outline of the
object (its shadow), since we would be close to the optical
limit. However, for the low-frequency case, this would yield a

"- diffraction effect due to interference between the waves

11.2 -17 >.3 . " reflected from different points of the object. We have shown
- -that the location of the nulls (as exhibited in Fig. 4) and the

number of nulls are almost an exclusive function of the kL/2
value. This means that a knowledge of the number or location
of the nulls for elongated objects can determine the length of
the object, since the equations below relate kL/2 in a 1:1

2n- correspondence between the number of nulls and the location

(a) of the nulls 1201:

0, ,=arcsin r(n + 1/2)]

N= sin [2(k2) (14)

.20 45 

.

The top three plots in Fig. 4 were performed for objects
with aspect ratios of 24:1 and for kL/2 = 40. The first of the
top three objects is a rigid spheroid, the second is a soft
spheroid, and the third is a rigid cylinder. Note that the

270' patterns are quite different for the three cases. The soft object
(b) exhibits little diffraction, which is a well-known fact frombackscattered form functions for soft objects 1151, 1161. In

fact, plots of bistatic angular distributicr,, af soft objects are
much more focused than their rigid cot,.,terparts due to less

+ .diffraction effects, which is illustrated in Fig. 5. The second
and third sets of objects correspond to monostatic angular
distributions for rigid spheroids for aspect ratios of 15:1 and

.4 . i0. 7.5:1 for kL/2 values from left to right of 30, 60, and 120.
respectively. Note that the patterns approach the optical limit
with increasing frequency. The rate of approach is more rapid
for the lower aspect ratio case, since the ka values for this case
are double that of the higher aspect ratio case.

Fig. 5 illustrates the case of soft scatterers for bistatL
angular distributions for end-on, 30, 60, and 900 relative to

(c) the axis of symmetry for an aspect ratio of 15:1 for kL/2 =
30. Note that due to decreased diffraction effects for soft

- " objects, this scatterer behaves less wave-like than its rigidY
counterpart and tends to focus the field more sharply.

* "Backscattered form functions are target echoes plotted as a
* -function of frequency. Only elastic and fluid targets sub-

0-' merged in water can support resonances. (We exclude the casc
S 2 -"of bubbles.) We illustrate this case by examining end-on

incidence of a steel elastic spheroid where the compressional
velocity is 5.95 km/s, the shear velocity is 3.24 km/s, and thL
density is 7.7 relative to that of water. The plot in Fig. 6 is
from U1/2 = 4-16. We obsena two interesting features. The

first feature is the periodic behavior known as Franz waves.
(d) They correspond to an interference between the specular

Fig. 1. Scattering from a rigid spheroid of aspect ratio 15:1 for kL/2 - waves and the circumferentially diffracted waves. The mini-
120: (a) end-on incidence: (b) 30* relative to the axis of symmetry; (c) 60* mum and maximum values correspond to destructive and
relative to the axis of symmetry: and (d) 90* relative to the axis of constructive interference. This effect is strictly geometrical
symmetry, and would be identical to that of a rigid object of the same
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Fig. 3. Plot of forward scattering from target in Fig. 2 for broadside case in
frequency.
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90* 90

270" 270"
(a) N

_ 9 0 " 9 0 " _

/ ., /

, 18"* 180*

2702 270

(c) (d)

Fig. 5. Scattering from a soft spheroid 150 x 10 m for /2 =30: (a)

along the axis of symmetry; (b) 30* relative to the axis of symmetry: (c) 60*
relative to the axis of symmetry; and (d) 90* relative to the axis of
symmetry.

shape. The difference between rigid and elastic solids arises nances correspond to modal vibrations that result in standing
due to the coupling of transverse and longitudinal waves at the waves at discrete frequencies. a simple picture of this behavior
fluid-solid interface [ 171. These result in interface waves and, has been demonstrated [181. Note that these resonances are
for this case. the), arc leaky-type Rayleigh waves that result in also characterized by a minimum followed by a sharp rise. It
resonances at discrete frequencies. This resonance effect is has been demonstrated that the proper background for very
characterized by a minimum followed by a sharp rise, which thin shells is sound soft, and that is the case for this calculation
reflects the fact that these types of resonances change phase 1151, [161, [19].
rapidly by 180 ° relative to the nonresonance background and, We now investigate scattering from objects near an inter-
thus. are out of phase and then rapidly in phase with the face. Since the theory on this subject has not been well covered
background over a short change in UL/2. in the literature. we present a more extensive theoretical

Lo% er aspect ratio targets and spheres usually manifest a development of this topic than for the other cases.
m u c h m o re p ro n ou n c e d n u ll , b u t o u r stu d ie s in d ic a te th a t w ith I l c u T C S A T R N R M A B E T I A F S A Fincreasing aspect ratio this effect is less evident for end-on i.AosTic SCTEXACT IRMAE SOLUET INAHL-S
iesonances due to the already low value of the specularTHEXTIM ESotJO

reflection. Note that there are two Rayleigh resonances here, The calculation of the scattered acoustic field from a
the second being weaker than (he first. nonspherical object in free space is not a simple task. This

For completeness, we illustrate the resonance response for a problem, however, has been successfully treated using the T-
very thin steel shell with an aspect ratio of 3:1 in Fig. 7. The matrix method. The T-matrix method is due to Waterman 121,
parameters for steel are the same as for the case above. We [31 and has been developed for high-aspect-ratio objects by
plot the backscattered fo~rm function for kLi2 from 3 to 15. Werby and Chin-Bing [9) and Werby 1201. The scattering
Here we observe resonances at two locatio,,c These reso- problem is even more difficult when the object is near a plane
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!C5

8

4.0000 5.33"33 6.6667 8.0000 9,3,3,33 10.6667 12.000 13.3333 14.8667 16.000

KL/2

Fig. 6. Form function of steel solid spheroid of aspect ratio 6:1I from kL/2 =4-16.
0=

0.41.

Fig, 9 1,rhcm.tic" of o~hh-c! near a half-spamce.

0.2-

0 - 3 . . 8 scattered field, restricted to the half-space, is the same as the

KU? scattered field from the single object in the half-space.
Fig. 7. Form function of steel spheroidal shell of aspect ratio 3:1 from Consider now an object in a half-space bounded by a plane

kL/2 = 3-15. surface (z = 0) as depicted by Fig. 8. The object is assumed to
be rigid for the sake of definiteness. Only the free-space TI

matrix of the object is needed so other types of objects may be
boundary. Our approach is to use the free-space T-matrix used in the same formulation. The plane surface is assumed to
scattering theory and apply it to an object in a half-space via be rigid. The case when the plane surface is free will be

the method of images. discussed later. The surface of the object is denoted by Si. The
The free-space scattering theory to be used is from Peterson point 0 is in the interior of the object at a distance d above the

and Strom f21 and involves the T-matrix formulation for plane surface. We assume that the object is insonified by a

acoustic scattering from an arbitrary number of scatterers. The known incident time-harmonic acoustic wave in the half-
object near a plane boundary is replaced by the object in free a ied the et i a d

bpe. rigi foa id the sfodffnteness Onyiten free-space Tn

space, along with its image and an appropriate restriction on unknown scattered field:

the incident wave. We then apply the theory of Peterson and
Strom [21] a to the combined system of two objects. The u(r)o=cui(r)s+ si(r). (15)acousti Sctern from an arbirar nmer of scttres Th knwninI tiehroI acutcwv inte Iaf
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The vector r = (x, y, z) is measured from the point 0 on the
plane surface below 01. The total field satisfies the Helmholtz
formula s,

U(7) = ui(7) + ! u+(r')Vgha1f(7, r"') ids' (16)
0 j

S, z=O- 0

for 7in the half-space outside S, and 7inside S1, where u, is
the limit from the outside of the total field u and T" is the
normal to the surface S1. The Green's function for a half-space
is

gh.f (7, 7') =g(, t) +g(1, R") Fig. 9. Schematic of object and its image.

where
The scattered field, far away from 0, is assumed to be

7' =(x', Y', Z') expanded in spherical waves as follows:

'" =(x', y', -Z') u(-) = I

and

g(7, 7'))=exp (ikl 17- "')1(4 r1-'1) The goal is to find the T matrix T(I, 2). which relates the
unknown f, to the known a,.

is the free-space Green's function. The total field satisfies (17), which can be written more
The integral equation in (16) will now be extended to compactly as

include the region below the plane z = 0. Assume that the
incident field and the Green's function for the half-space are u(77) = + u.r')Vg(, 7') ds' (18)
extended as even functions below the plane z = 0. Let S 2 be 0
the image of S, below the plane z = 0 as shown in the cross
section in Fig. 9. The total field is extended as an even for 7 outside S, and S 2 and 7 inside S, or S,, where ?" varies
function to the region outside S2 below the plane z = 0. The over the surface of the object S, and the surface of the image
right side of (16) defines a function that is een about the plane S2. All the functions appearing in (18) will be expanded in
z = 0. This function is the same as the total field in the region spherical waves. This expansion yields three infinite systems
outside S2 below the plane z = 0 and must be zero inside S2 . of linear equations resulting from Finside S1, 7inside S,, and "
Therefore, the total field satisfies the integral equation outside S, and S2. In matrix-vector notation these systems of

u(7) -equations 
are

0=u(r) + u(' Vg(,') ds' r( -J)6= iQ + ia( - 23) Re Q6, (19)
S1

+ u. (r)Vg(F "F-) •ds (17) R(J)a= io(2 J) Re Q6, + iQ,2  (20)

S2 : 7= -iR(J) Re Q6, -iR(- J) Re Q62. (21)

for 7outside S, and S2 and Finside S, or .5,- T " integral over The vector = (0, 0. d) is the position vector of 01 and - J
S, has been split into two terms containing the free-space = (0, 0, - d) is the position vector of 02. The vectors 61 and
Green's function, and the variable of integration in the second 7 contain the expansion coefficients of the surface fields on S,
term has been changed to r" using u, (7'") = u, (7'). The a
integral equation in (17) is the same as the one that would be

obtained using the method of Peterson and Strom [211 for two Qn, m - k Re ,(Vo,,(q) "ds'
identical rigid objects. If the plane surface is a free surface,
then the incident wave and the half-space Green's function are
extended as odd functions. The same integral equation is where Fi is a position vector of a point on the surface S,
obtained except that the total field is odd about the plane z = 0 measured from 01. The matrix Re Q is obtained by taking
in the region outside S, and S2. regular functions in both factors in the integrand. For two

Based on this example, we proceed by using the method of scatterers, two matrices Q, and Q2 would normally be needed;
images. We follow the development of Peterson and Strom but since both scatterers are identical, the common value is
121] for two scatterers to solve the problem of scattering from called Q. The matrices R and o are determined by the
a rigid object in a half-space. The incident field will be translation properties of Re ,, and ',1 and can be found in
expanded in regular spherical waves relative to the origin 0 as Peterson and Strom 1211.

The T matrix T(l, 2) which satisfies
a Re= T(I, 2)d
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is found by eliminating 7. and 6, from (19)-(21). If b=
iQ6 1 and b2 = iQ6. ,hen (19) and (20) become

R (J)a= -o(2) TS, +b2

where T =-Re QQ is the free-space T matrix for the
object in a spherical wave representation. Solving for 61 abd b2

yields
,9 = (1 -o( -20)T(2d)T) 1[R( - 0) +o( -2 7 ) TR (a )1

(22 Fig. 10. Expected response from scattering of object near a half-space.

b2 = (1 - a(2J)Ta( - 2d) T) '[R(J) + o(2J) TR( - J)]a. little backscattering occurs, and most of the scattering is in the
forward direction. However, for the half-space problem, the

(23) results are characterized by a reflection from the rigid bottom.

The expansion coefficients for the scattered field are obtained These results look much like what is obtained when scattering is

from perpendicular to a rigid bottom. Fig. I I(b) and (c) illustrates
the examples for scattering at angles of 300 and 600,

.7= R(d)Tb, + R (- d)Tb2. (24) respectively. Note that, as expected, we obtain four lobes for
the half-space problem and only two for the free-space

Equations (22)-(24) reduce to the formula for T(l, 2) in 121, problem. Finally, when scattering perpendicular to the axis of
eq. (33)1. symmetry of the object and parallel with the bottom, we see an

For the specific problems to be considered, the incident almost symmetric distribution for the half-space problem,
field will be taken as a sum of plane waves that satisfy the whereas for the free-space problem most of the scattering goes
boundary condition on the plane surface as follows: off in the forward direction.

u,)exp .) ± exp (i'" • F) It is interesting to perform this calculation for a more
elongated object and at a higher frequency, since the effect of

where k (k cos 0, 0, k sin 0) and k" - (k cos 0, 0, - k sin the reflected waves would be enhanced. Fig. 12 is an example
0). The + sign is used for the rigid plane surface and the - for a spheroid of aspect ratio 10:1 for kL/2 = 30. Here Fig.
sign is used for the free-plane surface. 12(a)-(d) corresponds to scattering from 00, 30, 60, and

We now examine two examples in which we scatter from 900 relative to the axis of symmetry for only the half-space
objects near a rigid interface. Let us choose the case of a problem. The reflected and diffracted components are more
spheroid some distance from a rigid bottom in which the axis pronounced and better defined, as expected for the higher
of symmetry of the spheroid is perpendicular to the interface, frequency cases. From these examples, objects in the presence
Fig. 10 is a schematic of the problem under investigation. The of a boundary clearly will have angular distributiors quite
solid arrows indicate the features seen in the absence of a different from those in a free fluid or far from a boundarV.
bottom, and the dashed arrows show the features that appear V. SCAENG IN A WAVEGUIDE
because of the presence of the bottom. Please note that all
measurements are made in the physical region and do not Scattering from an object in a waveguide becomes a very
include the nonphysical region across the rigid boundary. If difficult problem if one attempts to treat it exactly. Not only is
the incident field is at an angle (relative to the bottom) greater it difficult to formulate for equations suitable for computation.
than zero but less than 90*. then a four-lobed figure would be but even approximate methods resulting from an exact
expected. One lobe corresponds to a reflection from the framework result in expressions that are not very useful from
object: a second lobe corresponds to the field diffracted from the calculational point of view. We therefore resort to
the object. Of the last two lobes (which arise only in the approximations based on physical insight.
presence of the bottom), one corresponds to a reflection of the To do this let us take an object in a waveguide. Let us
reflected wave from the object (which would come off in the assume that the object is insonified by the guided wave and
opposite direction of the incident field), and the other that it is small enough that it will not affect the incoming field
corresponds to a reflection of the diffracted wave from the significantly. Then, to obtain the scattered field in a region
bottom. near the object but far enough away from the boundaries so

We will examine these cases for two examples. The distance that it will not have a chance to form a guided wave. one can

from the surface is eight times the diameter of the object. In construct the scattered field using the T matrix in conjunction
the first example we will give comparisons of the object near with the incident waveguide by representing tlc incident field
the interface with one in a free environment. The object is a in a spherical representation so as to be compatible with the T
rigid spheroid of aspect ratio 2 and kL/2 - 10. Fig. I 1(a) matrix, since the T matrix is in that representation. One can
illustrates an example in which we scatter perpendicular to the use the scattered field in the local vicinity of the object to be
bottom (end-on for the object). For the free-space example, the source term of a Hemholtz equation that will form a new
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Fig. II. Comparison of scattering from an object near an interface and in a
free environment for an object of aspect ratio 2:1 and kL/2 = 10: (a) end-
on; (b) 30" relative to the plane; (c) 60" relative to the plane and (d) 900
relative to the axis of the plane.
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Fig. II. (Continued.)

guided wave as the field begins to interact with the boundary. tion of the problem, namely
The inhomogeneous equation isThe- (25)qutoni Us(r)= ! (f(r')OG(r, r')/8n- G(r, r')af(r')/an) dSV 2 U+K K 2U=f (25) (7

(27)
where

where the surface is chosen at a suitable region circumscribing
f= Ta. the object. Alternative techniques to the above method are one

in which the field scattered from the object is matched at some

Here, we construct a from normal-mode solutions, which point to a form of the waveguide solution via logarithmic
can be expres&,-d in a representation of incoming and outgoing derivatives, or one in which certain orthogonal properties of
plane waves. The most general case would require that the normal-mode series are exploited to project the scattered
individual components (pairs of incoming and outgoing plane solution onto the normal-mode representation. Some weighed
waves) enter the target with different wavenumbers and at residual method in which the test functions are normal-mode
different angles relative to the target. This would entail functions can also be used. Currently we are examining these
constructing a T matrix for each wavenumber. One would then methods for comparison, and the results will be reported in a
represent the individual plane-wave components in the form of future work. The following is a development of the method we
a Rayleigh series that consists of products of spherical Bessel deem most suitable to solve this problem. As discussed above,
functions and spherical harmonics that yield the desired we determine the field f just outside the object. In particular,
spherical representation of the sum of the plane wave. One is the field about a sphere circumscribing the object (suitably
then in a position to operate on each T matrix to obtain the near the object) with origin at the center of object can be
scattered field components. These components are then obtained from the expression
appropriately summed to obtain the final field, which is
accurate in the vicinity of the field. Once f is known, the nn 0, )= n , 6K)
solution to this problem can be obtained in one of several "M n
ways. The volume integral representation is as follows: y r,(O ,;)h(Kp)/(Knp)" 12 (28)

Ul(r)= G(r, r')f(r') dr' (26) where the oil" are projection coefficients of the normal-
mode functions onto the spherical (partial waxe) solutions.

where G is the approximate Green's function obtained from For the unperturbed waveguide LI0 in normal-mode repre-
the waveguide. The reason that we do not integrate over the sentation we have
surfaces of the upper and lower bounds as required in other
methods is that the Green's function here is associated with the U0 = !12(e'"4 )/d ( (29)
waveguide and is not the outgoing Green's function. All the
information contained at the boundaries is thus built into the The Green's function is
waveguide Green's function. The above volume integral is not
very efficient for calculation, so we will construct two Go=(i/2d) Z 0n(YnzJ)tb(-Ynz)Ho(Knr) (30)
alternatives. The first involves a surface integral representa-
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(a) (b)
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Fig. 12. Scattering from an object of aspect ratio 10: 1 for U1/2 =30: (a)
end-on; (b) 30* relative to the plane; (c) 60* relative to the plane; and (d)
90* relative to the plane.

when Ho is an outgoing cylindrical Hankel function and k, ' where
and K are the normal-mode functions and the vertical and
horizontal eigenfunctions, respectively. 0 ~o(Y,'en'*IK,'I2a

If we insert (28) and (30) into (27) this leads to an
expression far from the object of the form -I-(yz)er ()(Kfr(0))I 2 f(p1, 0, 0k)/an] dS. (32)

U.,(z, r)=J; a5,(r)0fl(yfz)e ,nrl(Kflr)112 (31) Note that (31) is in the form of a normal-mode solution, and
therefore the scattered wave forms a guided wave suitably far
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Fig. 13. Beam-formed response of rigid spheroid 100 m long and 10 m wide
as it passes midway between a source and receiver.

from the object, as one would expect. This solution, in fact, is comes halfway into the track when the object is between the
continuous throughout space and satisfies the boundary condi- source and the receiving array. However, since the scattered
tions of the confined environment that forms the guided wave. response is a guided wave, it can take a dip at the midpoint as it
We will illustrate an example in which we use an approximate does in this example. The array response due to the scattered
solution due to the Huyghen methods described above, field should be compared with the array response due to the

We will now present a calculation in which we scatter from direct field, which is 166 dB. In the future this method should
a rigid object with an aspect ratio of 10:1. The object chosen prove to be useful in discriminating between objects.
for study is a spheroid that is 100 x 10 m in a water column of V. CONCLUSION

150 m. A simple fluid bottom with a smooth ocean surface is We have examined scattering from objects in an unbounded
assumed. The speed of sound in the water is chosen to be 1500 environment, in an environment near an interface, and in a
m/s and the frequency is 250 Hz. All the former methods waveguide. Results for each case are quite different. For the
allow for a variable velocity profile, but for simplicity we unbounded case bistatic and monostatic angular distributions
choose an isovelocity profile for this example. and form functions are important tools that directly relate with

For the waveguide the bottom is chosen to be a sand half- objects. For objects near an interface, the interaction with the
space with a compressional velocity of 1733 m/s, a density of incident field and the interface is a very important factor. For
1.95 relative to water, and an attenuation constant of 0.97 dB waveguide scattering, the scattered field eventually adapts to
per wavelength. The source and receiver are situated 10 km the waveguide in which beamforming techniques would be
apart, and we allow the object to pass midway between the used for detection. The effect of motion on the mode-formed
source and the receiver. The source has an intensity of 166 dB or beam-formed array then becomes crucial, thus transition
and the receiver is a 16-hydrophone vertical array evenly time becomes important.
spaced in depth between 50 and 95 m. Both source and object
are midway between the top and bottom of the water column. ACKNOWLEDGMENT
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